Multiplicative chaos in random matrix theory and related fields

Christian Webb

Aalto University, Finland

ICMP 2018 Montréal – July 24, 2018
The GUE eigenvalue counting function.

- Let $\lambda_1 \leq ... \leq \lambda_N$ be the ordered eigenvalues of a GUE(N) random matrix – normalized to have limiting spectrum $[-1, 1]$.
The GUE eigenvalue counting function.

- Let $\lambda_1 \leq \ldots \leq \lambda_N$ be the ordered eigenvalues of a GUE(N) random matrix – normalized to have limiting spectrum $[-1, 1]$.
- For $x \in (-1, 1)$, let

$$V_N(x) = \sum_{k=1}^{N} 1\{\lambda_k \leq x\}.$$
The GUE eigenvalue counting function.

1. Let $\lambda_1 \leq \ldots \leq \lambda_N$ be the ordered eigenvalues of a GUE(N) random matrix – normalized to have limiting spectrum $[-1, 1]$.

2. For $x \in (-1, 1)$, let

$$V_N(x) = \sum_{k=1}^{N} 1\{\lambda_k \leq x\}.$$

3. Consider the stochastic process $\frac{e^{\gamma V_N(x)}}{\mathbb{E}e^{\gamma V_N(x)}}$ for $x \in (-1, 1)$ and $\gamma \in \mathbb{R}$.

Moments converge as $N \to \infty$:

Theorem (Charlier 2017)

Let $x_1, \ldots, x_k \in (-1, 1)$ be fixed and distinct. Then

$$\lim_{N \to \infty} \mathbb{E} \prod_{j=1}^{k} e^{\gamma V_N(x_j)} = \prod_{1 \leq p < q \leq k} \left| 1 - x_p x_q + \sqrt{1 - x_p^2} \sqrt{1 - x_q^2} \right|^\gamma \frac{\pi}{2}.$$
The GUE eigenvalue counting function.

• Let $\lambda_1 \leq \ldots \leq \lambda_N$ be the ordered eigenvalues of a GUE(N) random matrix – normalized to have limiting spectrum $[-1, 1]$.

• For $x \in (-1, 1)$, let

$$V_N(x) = \sum_{k=1}^{N} 1\{\lambda_k \leq x\}.$$

• Consider the stochastic process $\frac{e^{\gamma V_N(x)}}{\mathbb{E}e^{\gamma V_N(x)}}$ for $x \in (-1, 1)$ and $\gamma \in \mathbb{R}$.

• Moments converge as $N \to \infty$:

Theorem (Charlier 2017)

Let $x_1, \ldots, x_k \in (-1, 1)$ be fixed and distinct. Then

$$\lim_{N \to \infty} \mathbb{E} \prod_{j=1}^{k} \frac{e^{\gamma V_N(x_j)}}{\mathbb{E}e^{\gamma V_N(x_j)}} = \prod_{1 \leq p < q \leq k} \left| \frac{1 - x_p x_q + \sqrt{1 - x_p^2} \sqrt{1 - x_q^2}}{x_p - x_q} \right| \frac{\gamma^2}{2\pi^2}.$$
The GUE eigenvalue counting function.

- Let $\lambda_1 \leq \ldots \leq \lambda_N$ be the ordered eigenvalues of a GUE(N) random matrix – normalized to have limiting spectrum $[-1, 1]$.
- For $x \in (-1, 1)$, let

$$V_N(x) = \sum_{k=1}^{N} 1\{\lambda_k \leq x\}.$$

- Consider the stochastic process $\frac{e^{\gamma V_N(x)}}{E e^{\gamma V_N(x)}}$ for $x \in (-1, 1)$ and $\gamma \in \mathbb{R}$.
- Moments converge as $N \to \infty$:

Theorem (Charlier 2017)

Let $x_1, \ldots, x_k \in (-1, 1)$ be fixed and distinct. Then

$$\lim_{N \to \infty} \mathbb{E} \prod_{j=1}^{k} \frac{e^{\gamma V_N(x_j)}}{E e^{\gamma V_N(x_j)}} = \prod_{1 \leq p < q \leq k} \left| \frac{1 - x_p x_q + \sqrt{1 - x_p^2} \sqrt{1 - x_q^2}}{x_p - x_q} \right| \frac{\gamma^2}{2\pi^2}.$$

- Is there a process with such moments? Does $\frac{e^{\gamma V_N(x)}}{E e^{\gamma V_N(x)}}$ converge to it? What would this say about the GUE?
The limiting process – heuristics

- For $(Y_k)_{k=1}^{\infty}$ i.i.d. standard Gaussians and $(U_j)_{j=0}^{\infty}$ Chebyshev polynomials of the second kind, let (formally):

\[
X(x) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1 - x^2}.
\]
The limiting process – heuristics

- For \((Y_k)_{k=1}^{\infty}\) i.i.d. standard Gaussians and \((U_j)_{j=0}^{\infty}\) Chebyshev polynomials of the second kind, let (formally):

\[
X(x) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1 - x^2}.
\]

- Covariance structure (formally): for \(x, y \in (-1, 1)\)

\[
\mathbb{E}X(x)X(y) = \frac{1}{2\pi^2} \log \frac{1 - xy + \sqrt{1 - x^2} \sqrt{1 - y^2}}{|x - y|}.
\]
The limiting process – heuristics

- For \((Y_k)_{k=1}^{\infty}\) i.i.d. standard Gaussians and \((U_j)_{j=0}^{\infty}\) Chebyshev polynomials of the second kind, let (formally):

\[
X(x) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1 - x^2}.
\]

- Covariance structure (formally): for \(x, y \in (-1, 1)\)

\[
\mathbb{E} X(x)X(y) = \frac{1}{2\pi^2} \log \frac{1 - xy + \sqrt{1 - x^2} \sqrt{1 - y^2}}{|x - y|}.
\]

- For \(\mu_{\gamma}(x) = e^{\gamma X(x)} - \frac{\gamma^2}{2} \mathbb{E} X(x)^2\) (formally)

\[
\mathbb{E} \prod_{j=1}^{k} \mu_{\gamma}(x_j) = \prod_{1 \leq p < q \leq k} \left| \frac{1 - x_p x_q + \sqrt{1 - x_p^2} \sqrt{1 - x_q^2}}{x_p - x_q} \right|^2 \frac{\gamma^2}{2\pi^2}.
\]
The limiting process – heuristics

• For \((Y_k)_{k=1}^{\infty}\) i.i.d. standard Gaussians and \((U_j)_{j=0}^{\infty}\) Chebyshev polynomials of the second kind, let (formally):

\[
X(x) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1 - x^2}.
\]

• Covariance structure (formally): for \(x, y \in (-1, 1)\)

\[
\mathbb{E}X(x)X(y) = \frac{1}{2\pi^2} \log \frac{1 - xy + \sqrt{1 - x^2} \sqrt{1 - y^2}}{|x - y|}.
\]

• For \(\mu_\gamma(x) = e^{\gamma X(x)} - \frac{\gamma^2}{2} \mathbb{E}X(x)^2\) (formally)

\[
\mathbb{E} \prod_{j=1}^{k} \mu_\gamma(x_j) = \prod_{1 \leq p < q \leq k} \left| \frac{1 - x_p x_q + \sqrt{1 - x_p^2} \sqrt{1 - x_q^2}}{x_p - x_q} \right| \frac{\gamma^2}{2\pi^2}.
\]

• Precisely the moments we want! 😊
The limiting process – heuristics

• For \((Y_k)_{k=1}^{\infty}\) i.i.d. standard Gaussians and \((U_j)_{j=0}^{\infty}\) Chebyshev polynomials of the second kind, let (formally):

\[
X(x) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1 - x^2}.
\]

• Covariance structure (formally): for \(x, y \in (-1, 1)\)

\[
\mathbb{E}X(x)X(y) = \frac{1}{2\pi^2} \log \frac{1 - xy + \sqrt{1 - x^2} \sqrt{1 - y^2}}{|x - y|}.
\]

• For \(\mu_\gamma(x) = e^{\gamma X(x) - \frac{\gamma^2}{2} \mathbb{E}X(x)^2}\) (formally)

\[
\mathbb{E} \prod_{j=1}^{k} \mu_\gamma(x_j) = \prod_{1 \leq p < q \leq k} \left| \frac{1 - x_p x_q + \sqrt{1 - x_p^2} \sqrt{1 - x_q^2}}{x_p - x_q} \right|^{\gamma^2 / 2\pi^2}.
\]

• Precisely the moments we want! 😊

• For each \(x\), the sum defining \(X(x)\) diverges almost surely and \(\mathbb{E}X(x)^2 = \infty\). What does \(\mu_\gamma\) mean? 😐
Gaussian multiplicative chaos – rigorous construction

- Problem: X doesn’t exist in a pointwise sense – $\mathbb{E}X(x)^2 = \infty$?
Gaussian multiplicative chaos – rigorous construction

• Problem: \(X \) doesn’t exist in a pointwise sense – \(\mathbb{E}X(x)^2 = \infty \)?

• " \(\int_{-1}^{1} X(x)f(x)dx \)" does make sense for smooth enough \(f \rightarrow \) The sum defining \(X \) converges as a random generalized function, but how to exponentiate such an object?
Gaussian multiplicative chaos – rigorous construction

- Problem: X doesn’t exist in a pointwise sense – $\mathbb{E}X(x)^2 = \infty$?
- ”$\int_{-1}^{1} X(x)f(x)dx$” does make sense for smooth enough $f \to$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?
- Solution: regularize and treat as a measure or distribution:

$$X_N(x) = \frac{1}{\pi} \sum_{k=1}^{N} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1 - x^2}.$$
Gaussian multiplicative chaos – rigorous construction

- Problem: X doesn’t exist in a pointwise sense – $\mathbb{E} X(x)^2 = \infty$?
- "$\int_{-1}^{1} X(x)f(x)dx$" does make sense for smooth enough $f \to$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?
- Solution: **regularize and treat as a measure or distribution**:

$$X_N(x) = \frac{1}{\pi} \sum_{k=1}^{N} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1-x^2}.$$

$$\langle \mu_\gamma, f \rangle := \lim_{N \to \infty} \int_{-1}^{1} f(x) \frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} \, dx$$

- Can check that for nice test functions f and for $-\sqrt{2}/\pi < \gamma < \sqrt{2}/\pi$ the limits exist as we’re dealing with L^2-bounded martingales (actually OK for $-2\pi < \gamma < 2\pi$ – L^p-bounded martingale).
- This procedure defines random measures/distributions. These are the objects we are after – correlation kernels agree with the limiting GUE-moments.
Gaussian multiplicative chaos – rigorous construction

- Problem: X doesn’t exist in a pointwise sense – $\mathbb{E}X(x)^2 = \infty$?
- "$\int_{-1}^{1} X(x)f(x)dx$" does make sense for smooth enough $f \rightarrow$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?
- Solution: **regularize and treat as a measure or distribution:**

$$X_N(x) = \frac{1}{\pi} \sum_{k=1}^{N} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1 - x^2}.$$

$$\langle \mu_\gamma, f \rangle := \lim_{N \to \infty} \int_{-1}^{1} f(x) \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx$$

- Can check that for nice test functions f and for $-\sqrt{2\pi} < \gamma < \sqrt{2\pi}$ the limits exist as we’re dealing with L^2-bounded martingales (actually OK for $-2\pi < \gamma < 2\pi - L^p$-bounded martingale).
Gaussian multiplicative chaos – rigorous construction

• Problem: X doesn’t exist in a pointwise sense – $\mathbb{E}X(x)^2 = \infty$?
• "$\int_{-1}^{1} X(x)f(x)dx$" does make sense for smooth enough $f \rightarrow$ The sum defining X converges as a random generalized function, but how to exponentiate such an object?
• Solution: **regularize and treat as a measure or distribution**:

$$X_N(x) = \frac{1}{\pi} \sum_{k=1}^{N} \frac{Y_k}{\sqrt{k}} U_{k-1}(x) \sqrt{1 - x^2}.$$

$$\langle \mu_\gamma, f \rangle := \lim_{N \to \infty} \int_{-1}^{1} f(x) \frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} dx$$

• Can check that for nice test functions f and for $-\sqrt{2\pi} < \gamma < \sqrt{2\pi}$ the limits exist as we’re dealing with L^2-bounded martingales (actually OK for $-2\pi < \gamma < 2\pi$ – L^p-bounded martingale).
• **This procedure defines random measures/distributions. These are the objects we are after – correlation kernels agree with the limiting GUE-moments.**
Real Gaussian multiplicative chaos – the general picture

- A centered **log-correlated Gaussian field** $G(x)$ is (formally) a Gaussian process on \mathbb{R}^d with covariance

$$C(x, y) := \mathbb{E} G(x)G(y) = -\log |x - y| + \text{continuous}$$
A centered **log-correlated Gaussian field** $G(x)$ is (formally) a Gaussian process on \mathbb{R}^d with covariance

$$C(x, y) := \mathbb{E} G(x) G(y) = -\log |x - y| + \text{continuous}$$

Under mild conditions on C, honest Gaussian processes G_N with covariance converging to C exist (K-L expansion, convolution, ...).
Real Gaussian multiplicative chaos – the general picture

- A centered **log-correlated Gaussian field** $G(x)$ is (formally) a Gaussian process on \mathbb{R}^d with covariance

$$
C(x, y) := \mathbb{E} G(x) G(y) = - \log |x - y| + \text{continuous}
$$

- Under mild conditions on C, honest Gaussian processes G_N with covariance converging to C exist (K-L expansion, convolution, ...).

Theorem (Kahane 1985,...)

*For nice enough $C(x, y)$, as $N \to \infty$:

- $e^{\gamma G_N(x) - \frac{\gamma^2}{2} \mathbb{E} G_N(x)^2} dx$ converges to a non-trivial random measure M_γ for $-\sqrt{2d} < \gamma < \sqrt{2d}$. For $|\gamma| \geq \sqrt{2d}$, the limit is zero.

- For $|\gamma| < \sqrt{2d}$, M_γ lives on the random set of points (of dimension $d - \frac{\gamma^2}{2}$)

$$
\left\{ x \in \mathbb{R}^d : \lim_{N \to \infty} \frac{G_N(x)}{\mathbb{E} G_N(x)^2} = \gamma \right\}.
$$
A centered log-correlated Gaussian field $G(x)$ is (formally) a Gaussian process on \mathbb{R}^d with covariance

$$C(x, y) := \mathbb{E} G(x) G(y) = - \log |x - y| + \text{continuous}$$

Under mild conditions on C, honest Gaussian processes G_N with covariance converging to C exist (K-L expansion, convolution, ...).

Theorem (Kahane 1985,...)

For nice enough $C(x, y)$, as $N \to \infty$:

- $e^\gamma G_N(x) - \frac{\gamma^2}{2} \mathbb{E} G_N(x)^2 \, dx$ converges to a non-trivial random measure M_{γ} for $-\sqrt{2d} < \gamma < \sqrt{2d}$. For $|\gamma| \geq \sqrt{2d}$, the limit is zero.

- For $|\gamma| < \sqrt{2d}$, M_{γ} lives on the random set of points (of dimension $d - \frac{\gamma^2}{2}$)

$$\left\{ x \in \mathbb{R}^d : \lim_{N \to \infty} \frac{G_N(x)}{\mathbb{E} G_N(x)^2} = \gamma \right\}.$$

- Interpretation: GMC \to level sets. $\max_x G_N(x) \sim \sqrt{2d} \mathbb{E} G_N(x)^2$.
GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence – $M_\gamma =$ energy dissipation density.

- M_γ can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.

- Connections to RMT and number theory suggested by Fyodorov and Keating.

- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.)

- Connections to 2d quantum gravity and random planar maps. M_γ (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)

- Plays an important role in recent developments of constructive CFT/Liouville field theory. (David, Kupiainen, Rhodes, Vargas).

- Has also been used in some models of mathematical finance.
GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence $- M_\gamma =$ energy dissipation density.
- M_γ can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.)
- Connections to 2d quantum gravity and random planar maps. M_γ (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)
- Plays an important role in recent developments of constructive CFT/Liouville field theory. (David, Kupiainen, Rhodes, Vargas).
- Has also been used in some models of mathematical finance.
GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence – $M_\gamma = \text{energy dissipation density}$.
- M_γ can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.)
- Connections to 2d quantum gravity and random planar maps. M_γ (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)
- Plays an important role in recent developments of constructive CFT/Liouville field theory. (David, Kupiainen, Rhodes, Vargas).
- Has also been used in some models of mathematical finance.
GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence – $M_\gamma = \text{energy dissipation density}$.
- M_γ can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.).
GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence – $M_\gamma = \text{energy dissipation density}$.
- M_γ can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.).
- Connections to 2d quantum gravity and random planar maps. M_γ (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)
GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence – $M_\gamma = \text{energy dissipation density}$.
- M_γ can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.).
- Connections to 2d quantum gravity and random planar maps. M_γ (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)
- Plays an important role in recent developments of constructive CFT/Liouville field theory. (David, Kupiainen, Rhodes, Vargas).
GMC in other fields of mathematics

- Initial motivation for GMC (Mandelbrot, Kahane): statistical description of turbulence – $M_\gamma =$ energy dissipation density.
- M_γ can be seen as the (unnormalized) Gibbs measure of a random energy model with (logarithmic) correlations.
- Connections to RMT and number theory suggested by Fyodorov and Keating.
- Connections to random planar curves (SLE) through conformal welding. (Sheffield; Astala et al.).
- Connections to 2d quantum gravity and random planar maps. M_γ (for suitable γ and the 2d GFF) plays a role in constructing scaling limits of random planar maps. (Duplantier, Miller, and Sheffield)
- Plays an important role in recent developments of constructive CFT/Liouville field theory. (David, Kupiainen, Rhodes, Vargas).
- Has also been used in some models of mathematical finance.
The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)

Let $\gamma \in (-2\pi, 2\pi)$ and $f \in C_c((-1, 1))$. Then as $N \to \infty$

$$\int_{-1}^{1} f(x) \frac{e^{\gamma V_N(x)}}{\mathbb{E}e^{\gamma V_N(x)}} \, dx \overset{d}{\to} \int_{-1}^{1} f(x) \mu_\gamma(dx).$$
The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)

Let $\gamma \in (-2\pi, 2\pi)$ and $f \in C_c((-1, 1))$. Then as $N \to \infty$

$$\int_{-1}^{1} f(x) \frac{e^{\gamma V_N(x)}}{Ee^{\gamma V_N(x)}} \, dx \overset{d}{\to} \int_{-1}^{1} f(x) \mu_\gamma(dx).$$

- Proof based on strong Gaussian approximation through Riemann-Hilbert methods.

Corollary (Claeys, Fahs, Lambert, W 2018)

For any $\epsilon, \delta > 0$ fixed, $\lambda_1 \leq \ldots \leq \lambda_N$ as before, and ρ_k the classical locations of the eigenvalues:

$$\lim_{N \to \infty} P\left(\frac{1}{\pi} - \epsilon \leq \sup_{\delta N \leq k \leq (1 - \delta)N} \left| \lambda_k - \rho_k \right| \leq \frac{1}{\pi} + \epsilon \right) = 1.$$
The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)

Let $\gamma \in (-2\pi, 2\pi)$ and $f \in C_c((-1, 1))$. Then as $N \to \infty$

$$\int_{-1}^{1} f(x) \frac{e^{V_N(x)}}{\mathbb{E} e^{V_N(x)}} \, dx \xrightarrow{d} \int_{-1}^{1} f(x) \mu_\gamma(\, dx).$$

- Proof based on strong Gaussian approximation through Riemann-Hilbert methods.
- Using intuition of GMC→ level sets, one can prove global rigidity estimates.

Corollary (Claeys, Fahs, Lambert, W 2018)

For any $\epsilon, \delta > 0$ fixed, $\lambda_1 \leq \ldots \leq \lambda_N$ as before, and ρ_k the classical locations of the eigenvalues:

$$\lim_{N \to \infty} \mathbb{P}
\left[\frac{1}{\pi} - \epsilon \leq \sup_{\delta \leq k \leq (1 - \delta) N} \frac{1}{\sqrt{1 - \rho_k^2}} \log N | \lambda_k - \rho_k | \leq \frac{1}{\pi} + \epsilon \right] = 1.$$
The GUE e.v. counting function and GMC

Theorem (Claeys, Fahs, Lambert, W 2018)

Let $\gamma \in (-2\pi, 2\pi)$ and $f \in C_c((-1, 1))$. Then as $N \to \infty$

$$\int_{-1}^{1} f(x) \frac{e^{\gamma V_N(x)}}{\mathbb{E} e^{\gamma V_N(x)}} \, dx \xrightarrow{d} \int_{-1}^{1} f(x) \mu_{\gamma}(dx).$$

- Proof based on strong Gaussian approximation through Riemann-Hilbert methods.
- Using intuition of GMC→ level sets, one can prove global rigidity estimates.

Corollary (Claeys, Fahs, Lambert, W 2018)

For any $\epsilon, \delta > 0$ fixed, $\lambda_1 \leq \ldots \leq \lambda_N$ as before, and ρ_k the classical locations of the eigenvalues:

$$\lim_{N \to \infty} \mathbb{P} \left(\frac{1}{\pi} - \epsilon \leq \sup_{\delta N \leq k \leq (1-\delta)N} \frac{N^2 \pi \sqrt{1 - \rho_k^2}}{\log N} |\lambda_k - \rho_k| \leq \frac{1}{\pi} + \epsilon \right) = 1.$$
The Riemann zeta function

\[\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \Re(s) > 1. \]
The Riemann zeta function

\[\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \text{Re}(s) > 1. \]

- Has a meromorphic continuation to \(\mathbb{C} \), with a single pole at \(s = 1 \). Behavior of \(\zeta(\frac{1}{2} + it) \) is of fundamental importance in analytic number theory (distribution of primes etc).
The Riemann zeta function

\[\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \text{Re}(s) > 1. \]

- Has a meromorphic continuation to \(\mathbb{C} \), with a single pole at \(s = 1 \). Behavior of \(\zeta\left(\frac{1}{2} + it\right) \) is of fundamental importance in analytic number theory (distribution of primes etc).
- Statistical behavior of \(\zeta\left(\frac{1}{2} + it\right) \) expected to be similar to characteristic polynomials of random matrices, but little is known rigorously.
The Riemann zeta function

\[\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \text{Re}(s) > 1. \]

- Has a meromorphic continuation to \(\mathbb{C} \), with a single pole at \(s = 1 \). Behavior of \(\zeta(\frac{1}{2} + it) \) is of fundamental importance in analytic number theory (distribution of primes etc).
- Statistical behavior of \(\zeta(\frac{1}{2} + it) \) expected to be similar to characteristic polynomials of random matrices, but little is known rigorously.

Theorem (Ingham 1926, Bettin 2010)

Let \(\omega \) be uniformly distributed on \([0, 1]\) and \(x, y \in \mathbb{R} \) be fixed. As \(T \to \infty \)

\[
\mathbb{E} \zeta \left(\frac{1}{2} + i x + i \omega T \right) \zeta \left(\frac{1}{2} + i y + i \omega T \right) = \zeta(1 + i(x - y)) + \frac{\zeta(1-i(x-y))}{1-i(x-y)} \left(\frac{T}{2\pi} \right)^{-i(x-y)} + O(T^{-1/12}).
\]
The Riemann zeta function

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{n^{-s}}{} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \text{Re}(s) > 1. \]

- Has a meromorphic continuation to \(\mathbb{C} \), with a single pole at \(s = 1 \).
- Behavior of \(\zeta(\frac{1}{2} + it) \) is of fundamental importance in analytic number theory (distribution of primes etc).
- Statistical behavior of \(\zeta(\frac{1}{2} + it) \) expected to be similar to characteristic polynomials of random matrices, but little is known rigorously.

Theorem (Ingham 1926, Bettin 2010)

Let \(\omega \) be uniformly distributed on \([0, 1]\) and \(x, y \in \mathbb{R} \) be fixed. As \(T \to \infty \)

\[
\mathbb{E} \zeta \left(\frac{1}{2} + ix + i\omega T \right) \zeta \left(\frac{1}{2} + iy + i\omega T \right)
= \zeta(1 + i(x - y)) + \frac{\zeta(1 - i(x - y))}{1 - i(x - y)} \left(\frac{T}{2\pi} \right)^{-i(x-y)} + \mathcal{O}(T^{-1/12}).
\]

- Does \(\lim_{T \to \infty} \zeta \left(\frac{1}{2} + ix + i\omega T \right) \) exist? ...
Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

• For any \(f \in C_c^\infty(\mathbb{R}, \mathbb{C}) \),

\[
\int \zeta \left(\frac{1}{2} + i \omega T + ix \right) f(x) dx \xrightarrow{d} \langle \xi, f \rangle \quad \text{as} \quad T \to \infty
\]
Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any \(f \in C_c^\infty(\mathbb{R}, \mathbb{C}) \),
 \[
 \int \zeta \left(\frac{1}{2} + i\omega T + ix \right) f(x) dx \xrightarrow{d} \langle \xi, f \rangle \quad \text{as} \quad T \to \infty
 \]

- \(\xi = \prod_{k=1}^\infty (1 - p_k^{-\frac{1}{2} - ix} e^{i\theta_k})^{-1} \overset{d}{=} e^{E\nu} \), where \(\theta_k \) i.i.d. and uniform on \([0, 2\pi]\), \(E \) is a random smooth function, and \(\nu \) is a complex GMC distribution.
Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any \(f \in C_c^\infty(\mathbb{R}, \mathbb{C}) \),
 \[
 \int \zeta \left(\frac{1}{2} + i\omega T + ix \right) f(x) dx \xrightarrow{d} \langle \xi, f \rangle \quad \text{as} \quad T \to \infty
 \]

- \(\xi = \prod_{k=1}^\infty (1 - p_k^{-\frac{1}{2} - ix} e^{i\theta_k})^{-1} \overset{d}{=} e^{E \nu}, \) where \(\theta_k \) i.i.d. and uniform on \([0, 2\pi]\), \(E \) is a random smooth function, and \(\nu \) is a complex GMC distribution.

- On a suitable mesoscopic scale, \(\zeta \left(\frac{1}{2} + i\omega T + ix \right) \) is asymptotically proportional to the characteristic polynomial of a Haar distributed random unitary matrix.
Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

• For any \(f \in C_\infty_c(\mathbb{R}, \mathbb{C}) \),

\[
\int \zeta \left(\frac{1}{2} + i\omega T + ix \right) f(x) dx \xrightarrow{d} \langle \xi, f \rangle \quad \text{as} \quad T \to \infty
\]

• \(\xi = \prod_{k=1}^{\infty} (1 - p_k^{-1/2 - ix} e^{i\theta_k})^{-1} \overset{d}{=} e^{E \nu} \), where \(\theta_k \) i.i.d. and uniform on \([0, 2\pi]\), \(E \) is a random smooth function, and \(\nu \) is a complex GMC distribution.

• On a suitable mesoscopic scale, \(\zeta \left(\frac{1}{2} + i\omega T + ix \right) \) is asymptotically proportional to the characteristic polynomial of a Haar distributed random unitary matrix.

• (Stronger results) conjectured by Fyodorov and Keating.
Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

• For any \(f \in C_c^\infty(\mathbb{R}, \mathbb{C}) \),

\[
\int \zeta \left(\frac{1}{2} + i \omega T + ix \right) f(x) dx \xrightarrow{d} \langle \xi, f \rangle \quad \text{as} \quad T \to \infty
\]

• \(\xi = \prod_{k=1}^{\infty} (1 - p_k^{-\frac{1}{2}} e^{i \theta_k})^{-1} \overset{d}{=} e^{E \upsilon}, \) where \(\theta_k \) i.i.d. and uniform on \([0, 2\pi]\), \(E \) is a random smooth function, and \(\upsilon \) is a complex GMC distribution.

• On a suitable mesoscopic scale, \(\zeta \left(\frac{1}{2} + i \omega T + ix \right) \) is asymptotically proportional to the characteristic polynomial of a Haar distributed random unitary matrix.

• (Stronger results) conjectured by Fyodorov and Keating.
• Proof philosophy similar to GUE. Methods fairly basic number theory.
Multiplicative chaos and the Riemann zeta

Theorem (Saksman, W (2016))

- For any \(f \in C_c^\infty(\mathbb{R}, \mathbb{C}) \),
 \[
 \int \zeta \left(\frac{1}{2} + i\omega T + ix \right) f(x) dx \xrightarrow{d} \langle \xi, f \rangle \quad \text{as} \quad T \to \infty
 \]

- \(\xi = \prod_{k=1}^\infty (1 - p_k^{-\frac{1}{2}} - ix e^{i\theta_k})^{-1} \xrightarrow{d} e^{E_{\mathcal{V}}} \), where \(\theta_k \) i.i.d. and uniform on \([0, 2\pi]\), \(E \) is a random smooth function, and \(\mathcal{V} \) is a complex GMC distribution.

- On a suitable mesoscopic scale, \(\zeta \left(\frac{1}{2} + i\omega T + ix \right) \) is asymptotically proportional to the characteristic polynomial of a Haar distributed random unitary matrix.

- (Stronger results) conjectured by Fyodorov and Keating.
- Proof philosophy similar to GUE. Methods fairly basic number theory.
- Geometric interpretation? Interesting results about \(\max \text{Re/Im} \log \zeta \left(\frac{1}{2} + ix + i\omega T \right) \) exist: see Najnudel; Arguin et al.
The critical Ising model

• Let U be a bounded simply connected domain in \mathbb{C} and U_δ a lattice approximation of U of mesh $\delta > 0$.
The critical Ising model

- Let U be a bounded simply connected domain in \mathbb{C} and U_δ a lattice approximation of U of mesh $\delta > 0$.
- Let $(\sigma_\delta(a))_{a \in U_\delta}$ be a spin configuration distributed according to the critical Ising model on U_δ with $+$ b.c. Extend σ_δ to U.

Theorem (Chelkak, Hongler, and Izyurov 2015)

Let ψ be any conformal bijection from U to the upper half plane and C a suitable constant. Then for $x_1, \ldots, x_k \in U$ fixed and distinct,

$$\lim_{\delta \to 0} \frac{\psi'_{\psi(x_j)} \psi_{\psi(x_j)}^{1/4}}{\sum_{\mu \in \{-1,1\}^k} \prod_{1 \leq p < q \leq k} |\psi_{\psi(x_p)} - \psi_{\psi(x_q)}|_{2 \text{Im}(\psi(x_j))}^{1/4} \prod_{j=1}^k \sigma_\delta(x_j)^2} = C$$
The critical Ising model

- Let U be a bounded simply connected domain in \mathbb{C} and U_δ a lattice approximation of U of mesh $\delta > 0$.
- Let $(\sigma_\delta(a))_{a \in U_\delta}$ be a spin configuration distributed according to the critical Ising model on U_δ with + b.c. Extend σ_δ to U.

Theorem (Chelkak, Hongler, and Izyurov 2015)

Let ψ be any conformal bijection from U to the upper half plane and C a suitable constant. Then for $x_1, \ldots, x_k \in U$ fixed and distinct,

$$
\lim_{\delta \to 0^+} \delta^{-k/4} \left(\mathbb{E} \left[\prod_{j=1}^{k} \sigma_\delta(x_j) \right] \right)^2
$$

$$
= C^k \prod_{j=1}^{k} \left(\frac{|\psi'(x_j)|}{2 \text{Im}(\psi(x_j))} \right)^{1/4} \sum_{\mu \in \{-1,1\}^k} \prod_{1 \leq p < q \leq k} \left| \frac{\psi(x_p) - \psi(x_q)}{\psi(x_p) - \psi(x_q)} \right|^\frac{\mu_p \mu_q}{2}
$$
The critical Ising model

- Let U be a bounded simply connected domain in \mathbb{C} and U_δ a lattice approximation of U of mesh $\delta > 0$.
- Let $(\sigma_\delta(a))_{a \in U_\delta}$ be a spin configuration distributed according to the critical Ising model on U_δ with $+$ b.c. Extend σ_δ to U.

Theorem (Chelkak, Hongler, and Izyurov 2015)

Let ψ be any conformal bijection from U to the upper half plane and C a suitable constant. Then for $x_1, \ldots, x_k \in U$ fixed and distinct,

$$
\lim_{\delta \to 0^+} \delta^{-k/4} \left(\mathbb{E} \left[\prod_{j=1}^{k} \sigma_\delta(x_j) \right] \right)^2
$$

$$
= C^k \prod_{j=1}^{k} \left(\frac{|\psi'(x_j)|}{2\text{Im}(\psi(x_j))} \right)^{1/4} \sum_{\mu \in \{-1,1\}^k} \prod_{1 \leq p < q \leq k} \left| \frac{\psi(x_p) - \psi(x_q)}{\psi(x_p) - \overline{\psi(x_q)}} \right| \left| \frac{1}{2} \frac{\mu_p \mu_q}{\mu_p + \mu_q} \right|
$$

- If σ_δ and $\widetilde{\sigma_\delta}$ are independent copies, does $x \mapsto \delta^{-1/4} \sigma_\delta(x) \widetilde{\sigma_\delta}(x)$ converge to some process (known that $\delta^{-1/8} \sigma_\delta(x)$ does)? ...
The critical Ising model

Theorem (Junnila, Saksman, W 2018)

Let σ_δ and $\tilde{\sigma}_\delta$ be independent copies of the Ising spin field. Then for any $f \in C_c^\infty(U)$, as $\delta \to 0$

$$
\delta^{-1/4} \int_U f(x) \sigma_\delta(x) \tilde{\sigma}_\delta(x) \, dx \xrightarrow{d} \int \mathcal{C} \left(\frac{\left| \psi'(x) \right|}{2 \text{Im} \psi(x)} \right) : \cos \text{GFF}(x) : f(x) \, dx.
$$
The critical Ising model

Theorem (Junnila, Saksman, W 2018)

Let σ_δ and $\tilde{\sigma}_\delta$ be independent copies of the Ising spin field. Then for any $f \in C_\infty^\infty(U)$, as $\delta \to 0$

$$\delta^{-1/4} \int_U f(x)\sigma_\delta(x)\tilde{\sigma}_\delta(x)dx \xrightarrow{d} \int C \left(\frac{|\psi'(x)|}{2\text{Im } \psi(x)} \right) : \cos \text{GFF}(x) : f(x)dx.$$

- Known well in the physics literature – bosonization of the Ising model. See also work of Dubédat.
The critical Ising model

Theorem (Junnila, Saksman, W 2018)

Let σ_δ and $\tilde{\sigma}_\delta$ be independent copies of the Ising spin field. Then for any $f \in C^\infty_c(U)$, as $\delta \to 0$

$$\delta^{-1/4} \int_U f(x)\sigma_\delta(x)\tilde{\sigma}_\delta(x)\,dx \xrightarrow{d} \int C \left(\frac{\psi'(x)}{2\text{Im } \psi(x)} \right) : \cos \text{GFF}(x) : f(x)\,dx.$$

- Known well in the physics literature – bosonization of the Ising model. See also work of Dubédat.
- Proof is through method of moments: Chelkak, Hongler, and Izyurov + some rather easy bounds near the diagonal.
The critical Ising model

Theorem (Junnila, Saksman, W 2018)

Let σ_δ and $\tilde{\sigma}_\delta$ be independent copies of the Ising spin field. Then for any $f \in C^\infty_c(U)$, as $\delta \to 0$

$$
\delta^{-1/4} \int_U f(x)\sigma_\delta(x)\tilde{\sigma}_\delta(x)dx \overset{d}{\to} \int C \left(\frac{|\psi'(x)|}{2\text{Im} \, \psi(x)} \right) : \cos \text{GFF}(x) : f(x)dx.
$$

- Known well in the physics literature – bosonization of the Ising model. See also work of Dubédat.
- Proof is through method of moments: Chelkak, Hongler, and Izyurov + some rather easy bounds near the diagonal.
- Geometric interpretation?
The GFF and $\cos(\text{GFF})$: images

![GFF Image](image1)

![cos(GFF) Image](image2)