On foliations related to the center of mass in General Relativity

Carla Cederbaum

ICMP Montréal, 24th of July 2018
Consider initial data \((M^3, g, K, \mu, J)\) which are “optimally” asymptotically flat:

\[
M^3 \approx \mathbb{R}^3 \setminus \text{ball } \ni \vec{x}
\]

\[
g_{ij} = \delta_{ij} + \mathcal{O}_2(r^{-\frac{1}{2} - \varepsilon})
\]

\[
K_{ij} = \mathcal{O}_1(r^{-\frac{3}{2} - \varepsilon})
\]

\[
\mu, J = \mathcal{O}_0(r^{-3 - \varepsilon})
\]

for some \(\varepsilon > 0\) and \(r = |\vec{x}| \to \infty\).
Expectations of a notion of center of mass

- Transforms like a point particle in Special Relativity under change of observer:
 \[t \overset{\sim}{\rightarrow} \tilde{t} \]
 \[t = 0 \overset{\sim}{\rightarrow} \tilde{t} = 0 \]
 \[t = 1 \overset{\sim}{\rightarrow} \tilde{t} = 1 \]

- Equivariant transformation behavior under asymptotic boosts.

- Equivariant transformation under spatial translations and rotations.
- Point particle-like evolution under Einstein evolution equations:

 \[
 \frac{d}{dt}(E \vec{z}) = \vec{P}
 \]

 (ADM-energy \(E \), ADM-momentum \(\vec{P} \))

- Newtonian limit \(c \rightarrow \infty \) of \(\vec{z}(c) \) recovers Newtonian center of mass of \(\vec{z} \) limiting Newtonian isolated system.
Expectations of a notion of center of mass

- Transforms like a point particle in Special Relativity under change of observer:
 \[\sim \text{equivariant transformation behavior under asymptotic boosts} \]

- Equivariant transformation under spatial translations and rotations.
 - Point particle-like evolution under Einstein evolution equations:
 \[\frac{d}{dt}(E\tilde{z}) = \tilde{P} \]
 (ADM-energy \(E \), ADM-momentum \(\tilde{P} \))
 - Newtonian limit \(c \to \infty \) of \(\tilde{z}(c) \) recovers Newtonian center of mass of \(\tilde{z} \) limiting Newtonian isolated system
Expectations of a notion of center of mass

- Transforms like a point particle in Special Relativity under change of observer:
 \[\sim \text{equivariant transformation behavior under asymptotic boosts} \]

- Equivariant transformation under spatial translations and rotations.
- Point particle-like evolution under Einstein evolution equations:
 \[\frac{d}{dt}(E\vec{z}) = \vec{P} \]
 \(\text{(ADM-energy } E, \text{ ADM-momentum } \vec{P} \) \)

- Newtonian limit \(c \to \infty \) of \(\vec{z}(c) \) recovers Newtonian center of mass of \(\vec{z} \) limiting Newtonian isolated system
Expectations of a notion of center of mass

- Transforms like a point particle in Special Relativity under change of observer:
 \[t = 0 \quad \tilde{t} = 0 \]
 \[t = 1 \quad \tilde{t} = 1 \]
 \[t \rightarrow \tilde{t} \]

- Equivariant transformation under spatial translations and rotations.
- Point particle-like evolution under Einstein evolution equations:
 \[\frac{d}{dt}(E \tilde{z}) = \tilde{P} \]
 \[(\text{ADM-energy } E, \text{ADM-momentum } \tilde{P})\]

- Newtonian limit \(c \rightarrow \infty \) of \(\tilde{z}'(c) \) recovers Newtonian center of mass of \(\tilde{z}' \) limiting Newtonian isolated system
Status quo

Different definitions of center of mass in the literature:

- **Definition via Hamiltonian systems:**
 Regge–Teitelboim ’74, Beig–Ó Murchadha ’87.
 \(\leadsto\) does not transform equivariantly and does not converge in general

- **Asymptotic foliation definition by Huisken–Yau ’96.**
 \(\leadsto\) see below

- **Several others (Schoen, Corvino–Wu, Chen–Wang–Yau, . . .).**
 \(\leadsto\) do not always converge and/or can not be computed in general
Status quo

Different definitions of center of mass in the literature:

- *Definition via Hamiltonian systems:*
 - Regge–Teitelboim ’74, Beig–Ó Murchadha ’87.
 - \leadsto does not transform equivariantly and does not converge in general

- *Asymptotic foliation definition by Huisken–Yau ’96.*
 - \leadsto see below

- *Several others (Schoen, Corvino–Wu, Chen–Wang–Yau, . . .).*
 - \leadsto do not always converge and/or can not be computed in general
Excursion: Isolated systems in Newtonian Gravity

Center of mass $\vec{z}_N \in \mathbb{R}^3$ of a mass density ρ and mass $m_N = \int_{\mathbb{R}^3} \rho \, dV \neq 0$:

$$\vec{z}_N = \frac{1}{m_N} \int_{\mathbb{R}^3} \rho \, \vec{x} \, dV.$$

Can be reformulated: U Newtonian potential with $U \to 0$ as $r \to \infty$:

$$\triangle U = 4\pi \rho.$$

If $m_N \neq 0$: equipotential sets Σ_U foliate neighborhood of infinity.

Recover \vec{z}_N from

$$\vec{z}_N = \lim_{U \to 0} \int_{\Sigma_U} \vec{x} \, dA.$$
Excursion: Isolated systems in Newtonian Gravity

Center of mass \(\vec{z}_N \in \mathbb{R}^3 \) of a mass density \(\rho \) and mass \(m_N = \int_{\mathbb{R}^3} \rho \, dV \neq 0 \):

\[
\vec{z}_N = \frac{1}{m_N} \int_{\mathbb{R}^3} \rho \, \vec{x} \, dV.
\]

Can be reformulated: \(U \) Newtonian potential with \(U \to 0 \) as \(r \to \infty \):

\[
\Delta U = 4\pi \rho.
\]

If \(m_N \neq 0 \): equipotential sets \(\Sigma_U \) foliate neighborhood of infinity.

Recover \(\vec{z}_N \) from

\[
\vec{z}_N = \lim_{U \to 0} \int_{\Sigma_U} \vec{x} \, dA.
\]
Theorem (Huisken–Yau ’96; abstract CoM)

Let (M^3, g) be an asymptotically spherically symmetric Riemannian manifold of mass $m > 0$. There exists an (almost) unique foliation of a neighborhood of infinity by stable spheres Σ_H of constant mean curvature H (CMC).

- Asymptotic condition: $g_{ij} = (1 + \frac{m}{2r})^4 \delta_{ij} + O(\frac{1}{r^2})$.
- Generalizations: Ye, Metzger, Metzger–Eichmair, Huang, Nerz, ...
Theorem (Huisken–Yau ’96; coordinate CoM)

Euclidean center \vec{z}_H of Σ_H and center of mass \vec{z}_{HY}:

$$\vec{z}_H := \int x dA, \quad \vec{z}_{HY} := \lim_{H \to 0} \vec{z}_H.$$
However:

Theorem (C.–Nerz '14)

Der center of mass \(\vec{z}_{HY} := \lim_{H \to 0} \vec{z}_H \) does not always converge under the assumptions of Huisken–Yau.

Explicit counterexample: graphical timeslice in Schwarzschild spacetime:

\[
T(\vec{x}) = \frac{\vec{a} \cdot \vec{x}}{r} + \sin(\ln r),
\]

\(\vec{a} \in \mathbb{R}^3, \vec{a} \neq 0 \)

Figure: Logarithmic plot.

- Reason: \(\vec{R} \vec{x} \notin L^1 \) in general, \(\vec{R} \) scalar curvature of \(g \).
- Same phenomenon in Newtonian setting by changing coordinates asymptotically if \(\rho \vec{x} \notin L^1 \).
However:

Theorem (C.–Nerz ’14)

Der center of mass $\vec{z}_{HY} := \lim_{H \to 0} \vec{z}_H$ *does not always converge under the assumptions of Huisken–Yau.*

Figure: Logarithmic plot.

- **Explicit counterexample:**
 - Graphical timeslice in Schwarzschild spacetime:
 \[
 T(\vec{x}) = \frac{\vec{a} \cdot \vec{x}}{r} + \sin(\ln r),
 \]
 \[
 \vec{a} \in \mathbb{R}^3, \vec{a} \neq 0
 \]

- **Reason:** $\mathbb{R} \vec{x} \notin L^1$ in general, \mathbb{R} scalar curvature of g.
- **Same phenomenon in Newtonian setting by changing coordinates asymptotically** if $\rho \vec{x} \notin L^1$.
New development

Theorem (C.–Sakovich ’18)

Let $(\mathcal{M}^3, g, K, \mu, J)$ be initial data. Under optimal asymptotic flatness conditions and if the ADM-energy $E \neq 0$, there exists a unique foliation of a neighborhood of infinity by stable spheres $\Sigma_\mathcal{H}$ of constant spacetime mean curvature $\mathcal{H} = \sqrt{g(\mathcal{H}, \mathcal{H})}$ (STCMC).

Assuming $\mu \vec{x} \in L^1$, the euclidean center $\vec{z}_\mathcal{H}$ of $\Sigma_\mathcal{H}$ and the center of mass \vec{z} satisfies:\n
$$
\vec{z}_\mathcal{H} := \int_{x^i(\Sigma_\mathcal{H})} \vec{x} \, dA, \quad \vec{z} := \lim_{\mathcal{H} \to 0} \vec{z}_\mathcal{H}.
$$

aUnder a weak additional decay assumption on K which seem technical.
Coordinate STCMC-center of mass
New development.

Theorem (C.–Sakovich ’18)

- The STCMC-center of mass \(\vec{z} \) transforms equivariantly under the asymptotic Poincaré group (in coordinates), i.e. under boosts and spatial translations and rotations, as well as

- *point particle-like evolution under the Einstein evolution equations via*

\[
\frac{d}{dt} (E \vec{z}) = \vec{P}.
\]

- *The counterexample from [C.–Nerz ’14] has a well-defined STCMC-center of mass \(\vec{z} = \vec{0} \).*

New development...

- Have explicit formula for difference between \vec{z}_{HY} and new \vec{z} via BÓM–RT-formula (Huang, Nerz, ...).

- Agrees with Chen–Wang–Yau center of mass if initial data are asymptotically harmonic.

- Work in progress with Metzger: The extra weak additional decay assumption on K is not necessary but can be replaced by choosing suitable center of mass coordinates.
Open question: Newtonian limit of center of mass...

Theorem (C. ’11)

Along each c-dependant family of static isolated systems that has a Newtonian limit as $c \to \infty$, one finds that

$$\vec{z}_{HY}(c) = \vec{z}_{BOM-RT}(c) = \vec{z}_{PN}(c) \to \vec{z}_N.$$

Proof: Ehlers’ frame theory, differential geometry modelling, Kelvin transformation, weighted Sobolev space analysis, faster fall-off trick [C. ’11], localization of mass and center of mass via pseudo-Newtonian gravity.