Recent advances on mean-field spin glasses

Wei-Kuo Chen
University of Minnesota

Joint work with

July, 2018
What are spin glasses?

Spin Glasses are alloys with strange magnetic properties. Ex: CuMn
- In physics: spin + glass
- In mathematics: quenched disorder + frustration

Spin glass features appear in many real world problems:
- Traveling salesman problem.
- Hopfield neural network.
- Spike detection and recovery problems.
What are spin glasses?

Spin Glasses are alloys with strange magnetic properties. Ex: CuMn

- In physics: spin + glass
- In mathematics: quenched disorder + frustration
What are spin glasses?

- Spin Glasses are alloys with strange magnetic properties. Ex: CuMn
 - In physics: spin + glass
 - In mathematics: quenched disorder + frustration
- Spin glass features appear in many real world problems:
 - Traveling salesman problem.
 - Hopfield neural network.
 - Spike detection and recovery problems.
Edwards-Anderson model

- Consider a finite graph \((V, E)\) on \(\mathbb{Z}^d\).
- Hamiltonian: For \(\sigma \in \{-1, 1\}^V\),

\[
H(\sigma) = \sum_{(i,j) \in E} g_{ij} \sigma_i \sigma_j,
\]

where \(g_{ij}\) are i.i.d. \(N(0, 1)\).
Edwards-Anderson model

- Consider a finite graph \((V, E)\) on \(\mathbb{Z}^d\).
- Hamiltonian: For \(\sigma \in \{-1, 1\}^V\),
 \[
 H(\sigma) = \sum_{(i,j) \in E} g_{ij} \sigma_i \sigma_j,
 \]
 where \(g_{ij}\) are i.i.d. \(N(0, 1)\).
- **Frustration** appears when computing \(\max H_N(\sigma)\).

![Figure: Frustration](image-url)
Mean field approach: The Sherrington-Kirkpatrick model

- Hamiltonian:

\[
H_N(\sigma) = \frac{1}{\sqrt{N}} \sum_{i,j=1}^{N} g_{ij} \sigma_i \sigma_j + h \sum_{i=1}^{N} \sigma_i
\]

for \(\sigma \in \{-1, +1\}^N \), where \(g_{ij} \overset{i.i.d.}{\sim} N(0, 1) \).
Mean field approach: The Sherrington-Kirkpatrick model

- Hamiltonian:

\[
H_N(\sigma) = \frac{1}{\sqrt{N}} \sum_{i,j=1}^{N} g_{ij} \sigma_i \sigma_j + h \sum_{i=1}^{N} \sigma_i
\]

for \(\sigma \in \{-1, +1\}^N \), where \(g_{ij} \sim N(0, 1) \).

- Covariance Structure:

\[
\mathbb{E} \left(\frac{1}{\sqrt{N}} \sum_{i,j=1}^{N} g_{ij} \sigma_i^1 \sigma_j^1 \right) \left(\frac{1}{\sqrt{N}} \sum_{i,j=1}^{N} g_{ij} \sigma_i^2 \sigma_j^2 \right) = N \left(R(\sigma^1, \sigma^2) \right)^2,
\]

where

\[
R(\sigma^1, \sigma^2) = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^1 \sigma_i^2.
\]
Dean’s problem

Assign N students into two dorms and avoid conflicts.
Dean’s problem

Assign N students into two dorms and avoid conflicts.

$\sigma = \begin{pmatrix} +1 & -1 & +1 & +1 & -1 \end{pmatrix}$
Dean’s problem

Assign N students into two dorms and avoid conflicts.

\[\sigma = \begin{pmatrix} +1 & -1 & +1 & +1 \end{pmatrix} \]

\[\max \sigma \in \{-1, +1\} \]

\[\sum_{i,j=1}^{N} g_{ij} \sigma_i \sigma_j \]

<table>
<thead>
<tr>
<th>σ_i</th>
<th>σ_j</th>
<th>g_{ij}</th>
<th>$g_{ij}\sigma_i\sigma_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>>0</td>
<td>>0</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td><0</td>
<td><0</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>>0</td>
<td>>0</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td><0</td>
<td><0</td>
</tr>
</tbody>
</table>

Peace
Dean’s problem

Assign N students into two dorms and avoid conflicts.

Dean’s problem: Find the optimizer of

$$\max_{\sigma \in \{-1, +1\}^N} \sum_{i,j=1}^{N} g_{ij} \sigma_i \sigma_j.$$
A soft approximation: Free energy

For any $\beta = \frac{1}{T} > 0$ (inverse temperature), define the free energy

$$F_N(\beta) = \frac{1}{\beta N} \log \sum_{\sigma \in \{-1, +1\}^N} e^{\beta H_N(\sigma)}$$
A soft approximation: Free energy

- For any $\beta = \frac{1}{T} > 0$ (inverse temperature), define the free energy

$$F_N(\beta) = \frac{1}{\beta N} \log \sum_{\sigma \in \{-1, +1\}^N} e^{\beta H_N(\sigma)}$$

- Simple observation:

$$\max_{\sigma \in \{-1, +1\}^N} \frac{H_N(\sigma)}{N} \leq F_N(\beta) \leq \max_{\sigma \in \{-1, +1\}^N} \frac{H_N(\sigma)}{N} + \frac{\log 2}{\beta}$$
A soft approximation: Free energy

- For any \(\beta = \frac{1}{T} > 0 \) (inverse temperature), define the free energy
 \[
 F_N(\beta) = \frac{1}{\beta N} \log \sum_{\sigma \in \{-1, +1\}^N} e^{\beta H_N(\sigma)}
 \]

- Simple observation:
 \[
 \max_{\sigma \in \{-1, +1\}^N} \frac{H_N(\sigma)}{N} \leq F_N(\beta) \leq \max_{\sigma \in \{-1, +1\}^N} \frac{H_N(\sigma)}{N} + \frac{\log 2}{\beta}
 \]

- Physicists’ replica method:
 \[
 \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \log Z_N = \lim_{N \to \infty} \lim_{n \downarrow 0} \frac{\mathbb{E} \log Z_N^n}{nN} = \lim_{n \downarrow 0} \lim_{N \to \infty} \frac{\log \mathbb{E} Z_N^n}{nN}
 \]
Theorem (Parisi formula)

(Talagrand ’06)

$$\lim_{N \to \infty} F_N(\beta) = \inf_{\alpha} \left(\Phi_{\alpha,\beta}(0, h) - \frac{1}{2} \int_0^1 \beta \alpha(s) s ds \right), \text{ a.s.,}$$

where for any CDF α on $[0, 1]$,

$$\partial_s \Phi_{\alpha,\beta} = -\frac{1}{2} \left(\partial_{xx} \Phi_{\alpha,\beta} + \beta \alpha(s) (\partial_x \Phi_{\alpha,\beta})^2 \right), \forall (s, x) \in [0, 1) \times \mathbb{R}$$

with

$$\Phi_{\alpha,\beta}(1, x) = \frac{1}{\beta} \log \cosh(\beta x).$$

(Guerra’ 03) *Minimizer exists.*

(Auffinger-C. ’14) *Minimizer is unique.*

Denote this minimizer by α_{β} and call it the Parisi measure.
Significance of the Parisi measure

Three major predictions:

(1) α_β is the limiting distribution of the overlap:

$$R(\sigma^1, \sigma^2) \overset{d}{\Rightarrow} \alpha_\beta,$$

where σ^1, σ^2 are i.i.d. samplings from the Gibbs measure

$$G_N(\sigma) = \frac{e^{\beta H_N(\sigma)}}{\sum_{\sigma'} e^{\beta H_N(\sigma')}}.$$
(2) Phase Transition:

Figure: SK model with $h = 0$
(3) Ultrametricity: with probab. ≈ 1, for i.i.d. $\sigma^1, \sigma^2, \sigma^3 \sim G_N$,

$$\|\sigma^1 - \sigma^2\| \leq \max(\|\sigma^1 - \sigma^3\|, \|\sigma^2 - \sigma^3\|) + o(1).$$
(3) Ultrametricity: with probab. ≈ 1, for i.i.d. $\sigma^1, \sigma^2, \sigma^3 \sim G_N$,

$$\|\sigma^1 - \sigma^2\| \leq \max(\|\sigma^1 - \sigma^3\|, \|\sigma^2 - \sigma^3\|) + o(1).$$

Panchenko ’11: Ultrametricity holds for the SK model with a vanishing perturbation, but we do not know if it is still true without perturbation.
Theorem (Auffinger-C.-Zeng ’17)

The cardinality of $\text{supp} \alpha \beta$ diverges as $\beta \to \infty$.

As a consequence: If we add perturbation so that ultrametricity holds, then the total levels of the trees diverge as $\beta \uparrow \infty$.
Parisi formula for the maximal energy

For any $\gamma(s) = \mu([0, s])$ and $\int_0^1 \gamma(s) \, ds < \infty$, consider the PDE solution $\Psi_\gamma(1, x) = |x|$, $\partial_s \Psi_\gamma = \frac{1}{2} \left(\partial_{xx} \Psi_\gamma + \gamma(s) \left(\partial_x \Psi_\gamma \right)^2 \right)$, $\forall (s, x) \in [0, 1] \times \mathbb{R}$.

Theorem (Auffinger-C. '16) Parisi formula at zero temperature: $\lim_{N \to \infty} E_{\text{max}}_{\sigma \in \{-1, +1\}} N H_N(\sigma) = \inf_{\gamma} \left(\Psi_\gamma(0, h) - \frac{1}{2} \int_0^1 s \gamma(s) \, ds \right)$ (C.-Handschy-Lerman '16) Minimizer γ_P exists and is unique.
Parisi formula for the maximal energy

For any γ with $\gamma(s) = \mu([0,s])$ and $\int_0^1 \gamma(s)ds < \infty$, consider the PDE solution Ψ_γ,

$\Psi_\gamma(1,x) = |x|,$

$\partial_s \Psi_\gamma = -\frac{1}{2} \left(\partial_{xx} \Psi_\gamma + \gamma(s)(\partial_x \Psi_\gamma)^2 \right), \forall (s,x) \in [0,1) \times \mathbb{R}.$
Parisi formula for the maximal energy

For any γ with $\gamma(s) = \mu([0, s])$ and $\int_0^1 \gamma(s)ds < \infty$, consider the PDE solution Ψ_γ,

$$\Psi_\gamma(1, x) = |x|,$$

$$\partial_s \Psi_\gamma = -\frac{1}{2} \left(\partial_{xx} \Psi_\gamma + \gamma(s)(\partial_x \Psi_\gamma)^2 \right), \forall (s, x) \in [0, 1) \times \mathbb{R}.$$

Theorem

- *(Auffinger-C. ’16) Parisi formula at zero temperature:*

 $$\lim_{N \to \infty} \mathbb{E} \max_{\sigma \in \{-1, +1\}^N} \frac{H_N(\sigma)}{N} = \inf \left(\Psi_\gamma(0, h) - \frac{1}{2} \int_0^1 s \gamma(s)ds \right)$$

- *(C.-Handschy-Lerman ’16) Minimizer γ_P exists and is unique.*
Energy landscape: multiple peaks

Overlap \(R(\sigma, \sigma') = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \sigma'_i \).
Energy landscape: multiple peaks

Overlap $R(\sigma, \sigma') = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \sigma'_i$.

Theorem (Multiple peaks, C.-Handschy-Lerman ’16)

Assume $h = 0$. For any $\varepsilon > 0$, there exists a constant $K > 0$ s.t. for any $N \geq 1$, with probability at least $1 - K e^{-N/K}$, $\exists S_N \subset \{-1, +1\}^N$ such that

(i) $|S_N| \geq e^{N/K}$.

(ii) $\forall \sigma \in S_N$, $\left| \frac{H_N(\sigma)}{N} - \max_{\sigma' \in \Sigma_N} \frac{H_N(\sigma')}{N} \right| < \varepsilon$.

(iii) $\forall \sigma, \sigma' \in S_N \text{ with } \sigma \neq \sigma', \left| R(\sigma, \sigma') \right| < \varepsilon$.

Chatterjee '09: $|S_N| \geq \left(\log N \right)^c$.

Ding-Eldan-Zhai '14: $|S_N| \geq N^c$.

13/17
Energy landscape: multiple peaks

Overlap $R(\sigma, \sigma') = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \sigma'_i$.

Theorem (Multiple peaks, C.- Handschy-Lerman ’16)

Assume $h = 0$. For any $\varepsilon > 0$, there exists a constant $K > 0$ s.t. for any $N \geq 1$, with probability at least $1 - Ke^{-N/K}$, $\exists S_N \subset \{-1, +1\}^N$ such that

(i) $|S_N| \geq e^{N/K}$.

(ii) $\forall \sigma \in S_N, \left| \frac{H_N(\sigma)}{N} - \max_{\sigma' \in \Sigma_N} \frac{H_N(\sigma')}{N} \right| < \varepsilon$.

(iii) $\forall \sigma, \sigma' \in S_N$ with $\sigma \neq \sigma'$, $|R(\sigma, \sigma')| < \varepsilon$.

- Chatterjee ’09: $|S_N| \geq (\log N)^c$.
- Ding-Eldan-Zhai ’14: $|S_N| \geq N^c$.
Pure p-spin model for $p \geq 3$: Overlap gap property

- Hamiltonian:
 \[H_N(\sigma) = \frac{1}{N^{(p-1)/2}} \sum_{1 \leq i_1, \ldots, i_p \leq N} g_{i_1, \ldots, i_p} \sigma_{i_1} \cdots \sigma_{i_p}. \]

- (Overlap gap property) There exist $c, C > 0$ such that with overwhelming probability, any two near ground states σ^1 and σ^2 satisfy
 \[|R(\sigma^1, \sigma^2)| \notin [c, C]. \]
Computational hardness:
Computational hardness:

- Suppose σ^1 is a near ground state and σ^2 is the ground state so that

$$|R(\sigma^1, \sigma^2)| \leq c.$$
Computational hardness:
- Suppose σ^1 is a near ground state and σ^2 is the ground state so that
 \[|R(\sigma^1, \sigma^2)| \leq c. \]
- Locally update algorithms take exponential time to find the ground state since
 \[|R(\sigma^1, \sigma(n))| \notin [c, C]. \]
Computational hardness:
- Suppose σ^1 is a near ground state and σ^2 is the ground state so that
 \[|R(\sigma^1, \sigma^2)| \leq c. \]

- Locally update algorithms take exponential time to find the ground state since
 \[|R(\sigma^1, \sigma(n))| \notin [c, C]. \]

Results:
- C.-Gamarnik-Rahman-Panchenko ’17
- Jagannath-Ben Arous ’17
New challenges

Bipartite SK model: Let \(N_1 = cN \) and \(N_2 = (1 - c)N \).

\[
H_N(\sigma) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} g_{ij} \tau_i \rho_j
\]

for \(\sigma = (\tau, \rho) \in \{-1, +1\}^{N_1} \times \{-1, +1\}^{N_2} \). Note

\[
\mathbb{E}H_N(\sigma)H_N(\sigma') = c(1 - c)NR(\tau, \tau')R(\rho, \rho').
\]

Questions:
- Free energy?
- Ground state energy?
- Energy landscape?
Thank you for your attention.