Plenary Talks


    • Gilles Brassard Link to this person's website
      Université de Montréal
    No presentation title available

    • Subir Sachdev Link to this person's website
      Harvard University
    No presentation title available

    • Thibault Damour Link to this person's website
      Institut des Hautes Études Scientifiques
    No presentation title available

    • Lai-Sang Young Link to this person's website
      New York University
    No presentation title available

    • Duncan Haldane Link to this person's website
      Princeton University
    No presentation title available

    • Anne-Laure Dalibard Link to this person's website
      Université Pierre et Marie Curie
    No presentation title available

    • Alessandro Giuliani Link to this person's website
      Università di Roma Tre
    Universal fluctuations in interacting dimers
    Link to PDF file PDF abstract
    Size: 39 kb
    In the last few years, the methods of constructive Fermionic Renormalization Group have successfully been applied to the study of the scaling limit of several two-dimensional statistical mechanics models at the critical point, including: weakly non-planar 2D Ising models, Ashkin-Teller, 8-Vertex, and close-packed interacting dimer models. In this talk, I will focus on the illustrative example of the interacting dimer model and review some of the universality results derived in this context. In particular, I will discuss a proof of the massless Gaussian free field (GFF) behavior of the height fluctuations. It turns out that GFF behavior is connected with a remarkable identity (`Haldane relation') between an amplitude and an anomalous critical exponent, characterizing the large distance behavior of the dimer-dimer correlations. Based on joint works with V. Mastropietro and F. Toninelli.

    • John Cardy Link to this person's website
      University of California
    The $T\overline T$ deformation of quantum field theory
    Link to PDF file PDF abstract
    Size: 44 kb
    The $T\overline T$ deformation is a modification of local 2d QFT at short distances which is in some sense solvable. I argue that this is because it corresponds to coupling the theory to a random metric whose action is topological. Under the deformation, partition functions satisfy linear diffusion-type equations which describe a kind of Brownian motion in the moduli space of the world sheet manifold.

    • Slava Rychkov Link to this person's website
      The Institut des Hautes Études Scientifiques
    Conformal Field Theory and Critical Phenomena in $d=3$
    Link to PDF file PDF abstract
    Size: 46 kb
    I will review the recent progress in understanding the critical phenomena in $d=3$ dimensions using the conformal bootstrap approach. In particular, I will discuss results about the critical point of the 3d Ising Model and the $O(N)$ models.

    • Rupert Frank Link to this person's website
      LMH Műnich
    No presentation title available

    • Masatoshi Noumi Link to this person's website
      Kobe University
    Elliptic hypergeometric functions and elliptic difference Painlevé equation
    Link to PDF file PDF abstract
    Size: 37 kb
    Elliptic hypergeometric functions are a new class of special functions that have been developed during these two decades. In this talk I will give an overview of various aspects of elliptic hypergeometric series and integrals with emphasis on connections with integrable systems including the elliptic difference Painlevé equation.

    • Jean-Christophe Mourrat Link to this person's website
      École Normale Supérieure Paris
    Quantitative stochastic homogenization
    Link to PDF file PDF abstract
    Size: 39 kb
    Over large scales, many disordered systems behave similarly to an equivalent "homogenized" system of simpler nature. A fundamental example of this phenomenon is that of reversible diffusion operators with random coefficients. The homogenization of these operators has been well-known since the late 70's. I will present recent results that go much beyond this qualitative statement, reaching optimal rates of convergence and a precise description of the next-order fluctuations. The approach is based on a rigorous renormalization argument and the idea of linearizing around the homogenized limit.

    • Fabio Toninelli Link to this person's website
      Université Claude Bernard Lyon 1
    (2+1)-dimensional Stochastic Interface Dynamics
    Link to PDF file PDF abstract
    Size: 39 kb
    The goal of this talk is to discuss large-scale dynamical behavior of discrete interfaces. These stochastic processes model diverse statistical physics phenomena, such as interface growth by random deposition or the motion, due to thermal fluctuations, of the boundary between coexisting thermodynamic phases. While most known rigorous results concern (1+1)-dimensional models, I will present some recent ones in dimension (2+1). On the basis of a few concrete models, I will discuss both: (1) two-dimensional interface growth and the so-called Anisotropic KPZ universality class; and (2) reversible interface dynamics and the emergence of hydrodynamic limits, in the form of non-linear parabolic PDEs.

    • Edward Witten Link to this person's website
      Institute for Advanced Study
    Open and Closed Topological Strings In Two Dimensions
    Link to PDF file PDF abstract
    Size: 38 kb
    Several decades ago, three parallel theories of two-dimensional quantum gravity were developed, involving random matrices; Liouville theory coupled to matter; and topological field theory. The first two approaches have fairly straightforward extensions to the case of quantum gravity on a two-manifold with boundary, but the third does not. However, an extension of the third approach was discovered relatively recently by Pandharipande, Solomon, and Tessler, with later work by Buryak and Tessler. In this talk (based on work with R. Dijkgraaf), I will explain their construction in a more physical language.

    • Richard Kenyon Link to this person's website
      Brown University
    Analytic limit shapes for the 5 vertex model
    Link to PDF file PDF abstract
    Size: 38 kb
    This is joint work with Jan de Gier and Sam Watson. The Bethe Ansatz is a very old technique but using some new tools inspired by conformal invariance we can make progress on both the limit shape phenomenon and fluctuations for models beyond free fermionic models. In particular using the Bethe Ansatz we find an explicit expression for the free energy of the five vertex model. The resulting Euler-Lagrange equation can be reduced to an equation generalizing the complex Burgers' equation. We show how to solve this equation, giving analytic parameterizations for limit shapes.

    • Lisa Jeffrey Link to this person's website
      University of Toronto
    No presentation title available